Amenability and subexponential spectral growth rate of Dirichlet forms on von Neumann algebras
نویسندگان
چکیده
منابع مشابه
Various topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملRemarks on the Structure of Dirichlet Forms on Standard Forms of von Neumann Algebras
For a von Neumann algebra M acting on a Hilbert space H with a cyclic and separating vector ξ0, we investigate the structure of Dirichlet forms on the natural standard form associated with the pair (M, ξ0). For a general Lindblad type generator L of a conservative quantum dynamical semigroup on M, we give sufficient conditions so that the operator H induced by L via the symmetric embedding of M...
متن کاملOn Co-amenability for Groups and Von Neumann Algebras
We first show that co-amenability does not pass to subgroups, answering a question asked by Eymard in 1972. We then address address coamenability for von Neumann algebras, describing notably how it relates to the former. Co-amenable subgroups A subgroup H of a group G is called co-amenable in G if it has the following relative fixed point property: Every continuous affine G-action on a convex c...
متن کاملvarious topological forms of von neumann regularity in banach algebras
we study topological von neumann regularity and principal von neumann regularity of banach algebras. our main objective is comparing these two types of banach algebras and some other known banach algebras with one another. in particular, we show that the class of topologically von neumann regular banach algebras contains all $c^*$-algebras, group algebras of compact abelian groups and cer...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2017.10.017